Gold Nanoclusters Deposited on SiO2 via Water as Buffer Layer: CO-IRAS and TPD Characterization
نویسندگان
چکیده
CO adsorption properties on gold clusters were studied by infrared reflection absorption spectroscopy (IRAS) and temperature-programmed desorption (TPD). Two growth procedures that differ in the final gold clusters morphology were compared. In the first, the clusters were prepared by direct deposition (DD) of gold atoms on SiO2/Si(100) substrates. The second growth mode is based on initial evaporation of gold atoms on top of amorphous solid water as a buffer layer at 100 K that separates the small gold seed clusters from the substrate. Subsequent annealing to 300 K desorbs the water molecules, resulting in nanocluster growth and their (cold) deposition on the substrate in a buffer layer assisted growth (BLAG) mechanism. It is demonstrated here for the first time that one can independently control cluster size and density by repeating the BLAG procedure as many times as needed. BLAG clusters are more 3D in nature, have larger height to diameter ratio, yet their interaction with CO is very similar to DD clusters. This is reflected by the practically identical CO stretch observed on both clusters at 2106 ( 2 cm-1. The CO stretch frequency was found BLAG clusters size (2-10 nm) independent. CO molecules that are most strongly bound at the perimeter of the gold clusters do not contribute to the IRAS signal. TPD measurements have shown that CO interaction with BLAG clusters is somewhat weaker than with the DD clusters, indicated by lower and cluster size dependent peak desorption temperature (170-190 K for BLAG vs 230-240 K for DD clusters). Smaller clusters lead to higher COdesorption temperature. The area under the CO-TPD peak, linearly increases with the number of multiple BLAG cycles. The high-temperature tail of the TPD peaks above 200 K has been correlated with cluster perimeter gold atoms that seem to interact with the underlaying SiO2 substrate.
منابع مشابه
Preparation and characterization of silica supported Au-Pd model catalysts.
Au-Pd bimetallic model catalysts were synthesized as alloy clusters on SiO2 ultrathin films under ultrahigh vacuum (UHV) conditions. The surface composition and morphology were characterized with low energy ion scattering spectroscopy (LEIS), infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). Relative to the bulk, the surface of the clusters is enri...
متن کاملFormation and Thermal Stability of Au2O3 on Gold Nanoparticles: Size and Support Effects
Gold nanoparticles with two different size distributions (average sizes of ∼1.5 and ∼5 nm) have been synthesized by inverse micelle encapsulation and deposited on reducible (TiO2) and nonreducible (SiO2) supports. The thermal and chemical stability of oxidized gold species formed upon cluster exposure to atomic oxygen have been investigated in ultrahigh vacuum using a combination of temperature...
متن کاملFabrication of MgF2-SiO2 Nanocomposite Thin Films and Investigation of Their Optical and Hydrophobic Properties
In this research, MgF2-2%SiO2/MgF2 thin films were applied on a glass substrate. At first, MgF2 thin films with the optical thickness were deposited on the glass slide substrates. Then, MgF2-2%SiO2 thin films were deposited on the glass coated with MgF2 thin films. Finally, the nanocomposite thin films were surface treated by the PFTS solution. Characterization of the thin film was done by X-Ra...
متن کاملSynthesis of Three-Layered Magnetic Based Nanostructure for Clinical Application
The main objective of this research was to synthesize and characterize gold-coated Fe3O4 /SiO2 nanoshells for clinical applications. Magnetite nanoparticles (NPs) were prepared via co-precipitation. The results showed that smaller particles can be synthesized by decreasing the NaOH concentration, which in our case this corresponded to 35 nm by using 0.9 M of NaOH at 750 rpm. The NPs were then m...
متن کاملCharge storage in Co nanoclusters embedded in SiO2 by scanning force microscopy
Scanning force microscopy was used to study localized charge deposition and subsequent transport in Co nanoclusters embedded in SiO2 deposited on an n-type Si substrate. Co nanoclusters were charged by applying a bias voltage pulse between tip and sample, and electrostatic force microscopy was used to image charged areas, to determine quantitatively the amount of stored charge, and to character...
متن کامل